4 research outputs found

    Electrical Stimulation Elicit Neural Stem Cells Activation:New Perspectives in CNS Repair

    No full text
    Researchers are enthusiastically concerned about neural stem cell (NSC) therapy in a wide array of diseases, including stroke, neurodegenerative disease, spinal cord injury (SCI) and depression. Although enormous evidences have demonstrated that neurobehavioral improvement may benefit from NSC-supporting regeneration in animal models, approaches to endogenous and transplanted NSCs are blocked by hurdles of migration, proliferation, maturation and integration of NSCs. Electrical stimulation (ES) may be a selective nondrug approach for mobilizing NSCs in the central nervous system (CNS). This technique is suitable for clinic application, because it is well established and its potential complications are manageable. Here, we provide a comprehensive review of the emerging positive role of different electrical cues in regulating NSC biology in vitro and in vivo, as well as biomaterial-based and chemical stimulation of NSCs. In the future, ES combined with stem cell therapy or other cues probably becomes an approach for promoting brain repair

    Transcript profiles of maize embryo sacs and preliminary identification of genes involved in the embryo sac–pollen tube interaction

    No full text
    The embryo sac, the female gametophyte of flowering plants, plays important roles in the pollination and fertilization process. Maize (Zea mays L.) is a model monocot, but little is known about the interactions between its embryo sac and the pollen tube. In this study, we compared the transcript profiles of mature embryo sacs, mature embryo sacs 14–16 h after pollination, and mature nucelli. Comparing the transcript profiles of the embryo sac before and after the entry of the pollen tube, we identified 3,467 differentially expressed transcripts (3,382 differentially expressed genes; DEGs). The DEGs were grouped into 22 functional categories. Among the DEGs, 221genes were induced upon the entry of the pollen tube, and many of them encoded proteins involved in RNA binding, processing, and transcription, signaling, miscellaneous enzyme family processes, and lipid metabolism processes. Genes in the DEG dataset were grouped into 17 classes in a gene ontology enrichment analysis. The DEGs included many genes encoding proteins involved in protein amino acid phosphorylation and protein ubiquitination, implying that these processes might play important roles in the embryo sac–pollen tube interaction. Additionally, our analyses indicate that the expression of 112 genes encoding cysteine-rich proteins (CRPs) is induced during pollination and fertilization. The CRPs likely regulate pollen tube guidance and embryo sac development. These results provide important information on the genes involved in the embryo sac–pollen tube interaction in maize
    corecore